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Some New Aspects of Rational Interpolation 

By Claus Schneider and Wilhelm Werner 

Abstract. A new algorithm for rational interpolation based on the barycentric formula is 
developed; the barycentric representation of the rational interpolation function possesses 
various advantages in comparison with other representations such as continued fractions: it 
provides, e.g., information concerning the existence and location of poles of the interpolant. 

1. Introduction. Let r: R -- R be the rational function defined by 

(1) r(t).- = '=0aft/(t- tt) (if t # ti, i = O(1)n). 
n 

alt- ti) 

Obviously, lim, r(t) = fi if ai = 0; thus r is a rational interpolant of the data 

(ti,1i), i = O(1)n, if ai = 0, i = O(1)n, and ti = tj for i =I. In order to fix the 
constants ap, i = O(1)n, one can impose additional conditions on r. If we set 

11 n n n 

pAt) = ? atifi I-l (t - 09) q(t) = E? ai J-l (t - tj)g 
i=O ]=o; Joi 1=o j=o; *oi 

then r = p/q. Usually, the following assumptions are made: 

(2) P E Hm q E H,k m+k=nm > k; 

here HI1 denotes the space of real polynomials of degree < j. (As is well known, one 
can treat the case m < k by interpolation of the data (tig 1/fi), i = O(1)n, such that 
the degree of the numerator is k and the degree of the corresponding denominator is 
m; some simple modifications must be made if some of the figs vanish.) Note that 
our point of view differs from the usual one: since our ansatz (1) already ensures the 
interpolation property (if ai = 0, i = O(1)n, at least) we can add any reasonable 
conditions on p and q, for example (2). The standard approach is to prescribe the 
form of p and q; the coefficients of p and q are then determined such that p 
interpolates fq at tog t1,..., tn 

If q = 1, then (1) represents the barycentric form of the Lagrangian interpolation 

polynomial; hence the coefficients ai, i = O(1)n, of (1) can be determined with the 
same number of operations which is necessary to compute the Newtonian form of 
the interpolation polynomial via divided differences (cf. [16]). 

The barycentric representation of rational interpolants has a very remarkable 
property: Even if the coefficients ai are disturbed, for example, by round off, the 

exact interpolation property still holds (if the disturbed ai, i = O(1)n, do not vanish, 
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at least). Our analogue (1), (2) of the Lagrangian interpolation polynomial differs 
from others (e.g., due to Cauchy [1], Salzer [10], Predonzan [9]) since our representa- 
tion does not reflect the actual degree of p and q. It must be emphasized, however, 
that the advantages of our method, which will be discussed in detail later, are 
essentially based on the representation of r: They are lost if r is represented in a 
different way. 

Our method is reliable, i.e., it produces a solution of the interpolation problem if 
such a solution exists; otherwise, a rational interpolant for the attainable points is 
constructed and the unattainable points are detected. In contrast to other existing 
methods, our device also produces information concerning the existence and location 
of poles of r. 

Our paper is organized as follows: Section 2 contains background material; some 
of the results presented are not new, but we give-for the reader's convenience-new 
proofs in our terminology. The announced algorithms for rational interpolation are 
detailed in Section 3; in Section 4 we derive some differentiation formulas based on 
rational interpolation. 

2. Basic Facts on Rational Interpolation. In the sequel, we denote by f [to,.. ., tj] 
the lth divided difference of a function f with respect to the nodes t1, i = 0(1)1. We 
will frequently use the following fact: 

LEMMA 1. Let j E {0, 1,..., 1} and gi(t):= t - tj. Then (fgj)[to,..., t] = 

A~tom .. t_15 ti+15 ... ., t1]. 

With q E 11k we associate the unique polynomial p E IIm which interpolates fq 
at t0o ... ., t e; thus 

m 

(3) (fq)(t) = p(t) + [l (t - tj)(fq)[to *... * tm t]. 
j=O 

This relation plays a central role in the following considerations; as a consequence 
of (3) we get 

PROPOSITION 2. Assume that q E 11k and that p E rI m interpolatesfq at to, .. ., tin 

where m + k = n, m > k. Then the following statements are equivalent: 
(4) p interpolatesfq at t0, .. *, tn- 

(5) (fq)[to, ..., t ti] = 0, i = m + 1(1)n. 
(6) (fqQ)[to, .. ., tn] =0 for any Q E 11n-deg(p)-1 

(7) Let l be such that deg(p) < I < n; thenfor any subset {so . .., 1} of { to .. ., t,1} 

with cardinality l + 1: (fq)[s0,... , s1] = 0. 

Proof. (4) =- (5): Set t:= tp, i = m + 1(1)n, in (3). 
(5) _ (6): Set v:= deg(p); then p E ll, and 

m -i- 

p(t) = E? (fq)[to5 ... 5tj] (t - tj) 

implies 

(8) (fq)[to..., tj] = 0, i = v + 1 (1)m. 
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The functions wi, i = v + 1(1)n, 

m?1 

| l(t - t) if v + 1 i <m9 
j =i+l 

i( ) 1 r~t(t - j) if m + 1 i <n, 
i =m+l 

j* ii 

obviously form a basis of H- 1; repeated application of Lemma 1 shows that (5), 
(8) are equivalent to the equations 

(q )[to, ...9 tn ] = 0 i = v + 1(1)n, 
which imply (6). 

(6) _ (7): Set Q(t):= _n - t.)/H> 0(t - sy) in (6) and apply Lemma 1. 
(7) - .- (4): The polynomial 7T e rIn which interpolates fq at t ..,t, has the 

representation 
n i-1 

T(t) = E (fq)[tOg .. ** ti] n t - tj) 
i=O j=0 

V i -1 

= E (fq)[to9 .. * ti] 1- (t - tj) (by (7)) 
i=O j=0 

=p(t). 0 

Remark. (a) As dim Hk = k + 1 and q E k9 (5) represents a system of k linear 
equations for k + 1 unknowns. Therefore a nontrivial solution of (5) exists. Hence, 
the coefficients ai, i = O(1)n, of the barycentric representation (1) are the coeffi- 
cients of the Lagrangian form of q with respect to all nodes t0. .., tn: 

n n 

q(t) = a??i rI (t - tj). 
i=0 j=0; j*i 

(b) Let r := p/q, p E mg q E 1k' m + k = n, be a rational function interpolat- 
ing fe C'[a, b] at 0, t1 ,..., tn E [a, b]; assume that q(t) # 0 for any t E [a, b]. 
Then for any t # ti, i = O(1)n, the following equality is valid: 

n 

f (t) - r(t) = r1 (t - ti)(fq*)[ .. ., tng t]lq(t). 
i =o 

The equation 
n 

(fq)[t ..* *, tn9 t] =E aif Itig t] 
i=O 

can then be used to derive error estimates for rational interpolation. E 
Various authors derived (5) (or variants thereof) for special bases of H k: 

Examples. (a) With Qi(t) := t, i = 0(1)2k - 1, q(t) := Ek ouitg (6) yields: 

k 

aUi(fQi+j)1[t0, ..., tn] = 0, j = 0(1)k - 1. 
i=O 
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By a well-known identity for divided differences this system can be written as 

kl n n 

(*) E ai E f(t/)ti/j H (t - tj) 0, j = 0(1)k -1. 
i=O /=0 h=O; h*I 

This form of (6) was derived by Kronecker [4] and H. Werner [12] (for more 
historical information see Meinguet [6, p. 158 ff.]). From a computational point of 
view, (*) cannot be recommended: The computation of the coefficients requires 
many more arithmetic operations than are necessary; furthermore, numerical insta- 
bilities may occur if divided differences are evaluated in this way. 

(b) If we use the Lagrange basis of 11k' i.e., 

k k 

q(t):= E xi n1 (t - 09) 
i=O j=O; j*i 

then, by Lemma 1, (5) reads: 

k 

(**) ~ E Xif [ti tk?+ I ... tmg t1] = 0, j = m + 1(1)n. 
i=O 

In the case k = m, (**) is due to Predonzan [9]. Salzer [10] recently used the 
Lagrange basis in a similar way, but with respect to other nodes; he furthermore 
represents divided differences just like (*), hence the final remarks of (a) apply to his 
approach, too. 

(c) If we set q(t) := Ek V0 JH _1 (t - tj), then (5) yields 

k 

(9) E Pif[ti,...,tmtj] = 0, j = m + 1(1)n, 
i =o 

whereas (6) implies (set Qj(t) := Hn7=1+1(t - ti), so that (fq)[to, . . ., tj] = 0, j = 

m + 1(1)n): 

k 

(10) E vif[t, ...,t1] = 0, j = m + 1(1)n. 
i=O 

(10) was also derived by Opitz [8]. E 
Since the solution of (5) may not be unique, the following notion is introduced: 
Definition 3. A nontrivial solution q E 11k of (5) will be called the "minimum 

degree solution" if there is no nontrivial solution of (5) of less degree; the degree of 
the minimum degree solution is denoted by 8. E 

Obviously, the minimum degree solution is unique up to a (nonzero) constant 
multiple: 

Assume that there are two nontrivial solutions q1, q2 of minimal degree; then 
there is an a E R such that deg(q1 - aq2) < deg(q1). Obviously, q1 - aq2 is a 
solution of (5), too; as (by assumption) qi, i = 1, 2, are solutions of minimal degree, 
q1 - aq2 must be the trivial solution. This justifies 

Definition 4. The minimum degree solution of (5) which has leading coefficient 1 
will be called q8 in the sequel; the corresponding polynomial of degree at most m 
that interpolates fq8 at tO0..., tn is denoted by pa. E 
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The main properties of the minimum degree solution q8 are summarized in the 
following 

PROPOSITION 5. (a) If q E Ek is any solution of (5), p e IIm the corresponding 
polynomial interpolatingfq at to, ..., t,, then there exists a polynomial Q E 11deg(q)-8 

such that q = Qq8 andp = Qp8. 
(b) If q8(T) = 0 for some X E C, then either 

p8(T)*O and X r ti, i = 0(1)n, 

or 

p8(T)= O and X = t1 forsomei,O < i < n. 

Proof. (a) Since qp8 - q6p e In, (qp8 - q6p)(ti) = 0, i = 0(1)n, the equality 

(*) qp86 = qCp 

is valid; (*) implies that deg(p) = deg(q) + deg(p8) - 8. Let Q, R be polynomials 
such that q = Qq8 + R, deg(R) < 8; we show that R = 0: 

For any 7T E 11n-deg(p) -1 one has 

0 = (q7T)[t0, ...,tn] (by (6)) 
= (fq8Q7T)[t) . .t . t] +-(fRI r)[t0 ** tnj- 

As Q7 ce H I,,1-p-, where p:= deg(p8), (fq6Qr)[to,.. . tn] vanishes by (6); thus for 
any 7T E 11n~mi 1 one has (fR7T)[to,...,tj= 0. 

Hence, by Proposition 2, R is a solution of (5) of degree < 8; this implies that 
R = 0. As deg(Qp8) = deg(q) - 8 + deg(p8) = deg(p) and (Qp8)(t1) = (fq)(t1), 

= 0(1)n, we conclude that Qp8 = p. 
(b) Let X E R. R r ti, i = 0(1)n, p(t):= p[t, T], q(t):= qj[t, T]. Now assume 

that p8(T) = 0; then, since q8(T) = 0 by assumption, p interpolates fq at to,..., tn, 
i.e., q is a solution of (5) by Proposition 2. This contradicts the minimality of q&. A 
similar argument applies in the case X E C \ R if we set p(t):= p[t, T, fl, 
q(t):= q[t, T, Al. E 

COROLLARY 6. If q8(tj) = 0 for some j, 0 < j < n, then tj is a simple zero either of 
q8 or of p8. 

Proof. Assume that q8(t) = q(t)(t - t), p(t) = p(t)(t - tj), min(M, v) > 1. 

Then p,- 

Pv-l(t):= p(t)(t -tj)" 

interpolates fq, -1 at to,..., tn, where 

qg-,(t) := q(t)(t - tj) 

this contradicts the definition of 8. C 
Remark. Proposition 5 and Corollary 6 are essentially due to Maehly-Witzgall [5]; 

these results are also contained in Werner-Schaback [11, Satz 5.1] and in Wuytack 
[17, Lemma 2]. These authors use a different terminology, however; we therefore 
gave the proofs for the reader's convenience in our notation. a 
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Any real root X of q8 is by Proposition 5 either a pole of r or X = tj for some j 
and (to, fj) is an unattainable point; a point (to, fj) is called an unattainable point of 
a rational interpolation problem, if p(ti) = fiq(t,) for i = 0(1)n, but r(t ) 
lim1 &, p(t)/q(t) * fj. Since the coefficients a, i = 0(1)n, of the barycentric repre- 
sentation of r are the coefficients of the Lagrangian representation of q, we can give 
the following simple characterization of unattainable points: 

COROLLARY 7. A point (tj, fj) is an unattainable point if and only if aj = 0. U 

The possible appearance of poles of the interpolating function r in the interval 
containing the nodes ti, i = 0(1)n, is usually considered as the most serious 
disadvantage of rational interpolation. None of the existing devices for rational 
interpolation admits any easily available criterion concerning the existence and 
location of poles of r; if, however, r is represented in barycentric form, then the 
following result is valid: 

PROPOSITION 8. Let to < t1 < ... < tn, q8(t) = 7Oaa1H=o.1#1(t- t), a, * 0 
(i = O(1)n). 

(a) If r has no poles in [to, tn] then 

(11) signal = -signa+11, i = 0(1)n - 1. 

(b) If signal = signally for some j, 0 < j < n - 1, then r has an odd number of 
poles in (t, tj+ 1) (with their multiplicity taken into account). 

The proof follows immediately from the representation 

n 

a, = q6(tj)/ 17 (ti - t1), i = 0(1)n, 
j=o; ji+ 

and the fact that zeros of q6 are (by Proposition 5) necessarily poles of r. C 
Remarks. (a) Proposition 8 can easily be generalized to the case where unattaina- 

ble points occur. 
(b) If 8 < 1 then the condition (11) also implies that r has no pole in [to, tnj. It is 

not hard to show that in this case (11) is equivalent to the condition 

signf [t1. . ., tn] = signf [to,..., tn-1i, 

which was previously given by H. Werner (cf. [12, Satz 3.1], [11, Satz 5.2]). In the 
case 8 > 1, there may be an even number of poles in some interval (tj, tj+y) even 
though (11) is fulfilled. C 

The coefficients of the barycentric representation (1) of r thus give a great deal of 
information concerning poles if they are the coefficients of the Lagrangian represen- 
tation of the minimum degree solution q8. If the coefficients ai, i = 0(1)n, are 
computed from any other solution q of (5) of degree > 8, then r is not changed; the 
real zeros of q then, however, are not necessarily poles of r. It is therefore important 
to compute the minimum degree solution qs of (5); for certain bases of 11k this is 
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made possible by the following 

LEMMA 9. Let p1 8 uk' deg(pj) = j, j = O(1)k; for d = O(1)k let Amd E Rkd+? 

be the matrix 

(fpo)[to, ** tmo tm+k (fp1)[t0 .. *I tmo tm+k ... (fpd)[to* , * t tm+k I 

(Sp)P[to ** to9 tm+2] (UPI*[to .. * Atmtm+2] ... Pd)tOq - to9 tm+2] 

(SPo)t*9 .. * 9tm tm+k] (SPI*[to,... * gtotm+k] 
. 

(UPd)[tO .... to9 tm+k]| 

Then 8 is the minimal number such that rank(Ama8) = 8. 

Proof. Note that A mk describes the matrix of the system (5) for the basis Po, 
P1, ... 9 Pk of 1Ik* If the columns of Am d are linearly independent then there exists 
no nontrivial solution of the equation 

AmkY = 0 y:= (Yo Y1, ...yk)9 

such that Yd+l = -= Yk = 0; hence 8 can be characterized by the condition: 
8 = rank A m . E 

COROLLARY 10. If Gauss elimination with partial pivoting is applied to Am k then 
either 8 = k, or 8 is the index of the first column where no nonzero pivot element exists 
(if the columns of Amk are enumerated from 0 to k). E 

Remark. Corollary 10 suggests a very simple strategy for the computation of the 
minimum degree solution q8: apply Gauss elimination with partial pivoting to the 
linear system (9) (or alternatively to (10)), determine 8 and set v6:= 1, v6+1 = 
= Vk = 0. The required coefficients of q8 can then easily be computed by back 
substitution. The exceptional case 8 < k therefore requires less computations than 
the usual case 8 = k. E 

3. Computation of a Rational (m, k)-Interpolant. The algorithm for the solution of 
the rational interpolation problem which is motivated by the foregoing considera- 
tions consists of three steps: 

Step 1. Compute the elements of the matrix Am k of the linear system (5) for some 
basis of Ilk; in view of Lemma 9 and Corollary 10 we use a Newton basis with 
respect to the nodes to ..., tk (cf. (9), (10)). 

Step 2. Apply Gauss elimination with partial pivoting to the matrix Am k in order 
to find the nontrivial minimum degree solution q8. 

Step 3. Use algorithm (2.5) of [16] to compute the coefficients a,, i = 0(1)n, of the 
barycentric representation of r. 

For the reader's convenience we describe Step 1 and Step 3 in more detail now. 
Description of Step 1. The matrix Am k of the system (9) is 

f[to *... , tm tm+1i f[t1 *... , tmg tm+lI 
... 

f[tk, ... , tm tm+lI 

~to 9... * tmo tm+21 f[t1, .* * tin tm+21 
... f[tk, .* tin tm+2] 

f[tO ... *,tmtm+kI f[t1 *... * tmg tm+k] f 
[tk,9 *, tm tm+k] 
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This matrix can be computed as follows: 
(i) Compute the vector v E R"?1, vi:= f[ti, ..., ti] (i = m(-1)0), by the algo- 

rithm of divided differences. 
(ii) Let 

Urnl~,j: fm~j mj' 
-j =1(1)k; 

UI' y - (V Us-a+ l j~ 
)/ 

t-m +j ) 1 
= m ( -1)0 )'j=l()k 

then obviously u1j = f[t1,. ..., tmo tm+j], / = 0(1)m, j = 1(1)k, so that 

(Amk)ji = ui,j i = 0(1)k, j = 1(1)k. z 

Remarks. (a) Note that a permutation of the rows of Am k corresponds to a 
permutation of the nodes t +1, , t, 

(b) One may use the matrix of the linear system (10) in Step 1 as well; the 
computation of the elements of this matrix requires more arithmetic operations, 
however. This choice is preferable if several (m, k)-interpolants satisfying m > k, 
m + k = n, are to be computed. We will discuss this matter briefly at the end of this 
section. C 

Description of Step 3. Step 2 (which is routine and therefore needs no further 
comment) yields the minimum degree solution q6 in Newtonian form: 

a i-l 

q8(t) = E vi H (t - 09) Va 1 
i=O ]=O 

As already mentioned, the required coefficients ap, i = 0(1)n, of (1) are the 
coefficients of the Lagrangian representation of q6 with respect to all nodes to ... ., tn. 

Therefore they can be computed efficiently with algorithm (2.5) of [16]: 
Set 

ai~O:= v, i = 0(1)8, aiO:= 0, i=8+1(1)n, 

aji ;1:= ai j-11 t), j = 0(1)i -19 i = 1(1)n 

then ai =ai, 9 i = 0(1)n. 
If, for fixed m and k, several rational (m, k)-interpolants must be computed for 

different sets of data, but fixed nodes tn,..., tno then the computations should 
proceed as follows: 

Set a.0:= vi, i = 0(1)8, aio:= 0, i = 8 + 1(1)k; if 

aj i:- ajj _11( ti - ti ) ) j = 0(1 )i - 1, i = l1(1) kg 

then q6(t) = Eik=Oai k jk=O;ji(t - tj). 
From ai = q8(ti)/Hjn0.; jA i(ti - tj), i = 0(1)n, we conclude that 

al = alk/ H (t,- tj), I = 0(1)k, 
j = k ? 1 

k n 

all = ai~k/(t 
- 

ti)/ H (t - 
tj)9 I = k + 1(1)n. 
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The quantities i/H>k?1(tl - t1), I = O(1)k, and l/H=k?1. 
1+1(t, 

- t1) / = 

k + 1(1)n (which can be computed efficiently by algorithm (2.5) of [16], too!) may 
be computed once and for all; they can be computed analytically in the case of 
equidistant nodes. 

Remark. If one is interested in various rational (m, k)-interpolants (with m > 
k, m + k = n) then one should proceed as follows: 

Step 1. Compute the matrix Am k of (10): 

f [ to, tmol 
... 

*f*tk1,...,tm+k] f[tk,* ,tm+k] 

f [to * * tm+2] 
.. f [tk-19 .. 9 tm+2] f [tkg .. * tm+2] 

f [tog .. * tm+11 
.. f [tk-19 .. * tm+1] f [tkg .. * tm+1 

using the algorithm of divided differences. Note that the j x (j + 1) principal 
submatrix is identical with A- j,jg j = 1(1)k. 

Steps 2,3. Apply Gauss elimination without pivoting (assuming that this is 
possible) to Am k; it is then easy to compute all (n - j, j)-interpolants of f from the 
corresponding j x (j + 1) principal submatrices, j = 1(1)k. E 

Numerical Examples. In the following examples we normalize the coefficients ai, 
= 0(1)n, such that 

n 

E la, I= 1. 
i=O 

(a) From our point of view it is the major advantage of our representation (1) of 
the interpolating rational function r that it contains a good deal of information on the 
existence and location of poles. This is demonstrated in an example considered by H. 
Werner [15, Example 6]. It is very instructive to compare the graphs of the rational 
functions given in [15] with our results: all poles are easily detected by the sign 
pattern of the coefficients ap, i = 0(1)8, which are displayed in Table 1. 

TABLE 1 

Coefficients ai for Example (a) 

ti fi ai for(m,k)= 

(4,4) (5,3) (6,2) (7,1) 
0 -2 3.OOOOE - 2 -6.4202E - 2 2.3544E - 2 -1.3194E - 2 
1 -1 -1.OOOOE - 1 1.7899E - 1 -9.0753E - 2 8.5532E - 2 
2 0 9.000BE - 2 -3.5019E - 2 8.8185E - 2 -2.2930E - 1 
3 0 4.000BE - 2 -2.9572E - 1 5.8219E - 2 3.1847E - 1 
4 0 -6.000BE - 2 2.3346E - 1 -8.5616E - 2 -2.2293E - 1 
5 1 -1.4000E - 1 5.4474E - 2 -1.4555E - 2 3.8216E - 2 
6 0 2.9000E - 1 -4.2802E - 2 2.9195E - 1 5.0955E - 2 
7 -1 -2.000BE - 1 -6.2257E - 2 -1.7808E - 1 -3.4577E - 2 
8 -2 5.000BE - 2 3.3074E - 2 3.8099E - 2 6.8244E - 3 
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It is, e.g., evident from these data that the rational (4,4)-interpolant has at least 
one pole in the intervals (2,3) and (4,5); actually both intervals contain exactly one 
pole. 

(b) In the next example there occurs an unattainable point: Interpolate the data 
(0,1), (2,2), (2.5, 9.5), (3, 2.5), (4,3) by a rational function such that m = 3, k = 1 (cf. 
H. Werner [15, Example 4]). The computed coefficients are shown in Table 2. 

TABLE 2 

Coefficents a, for Example (b) 

ti ai 
0 -5.5555E - 2 
2 3.3333E - 1 
2.5 5.7824E - 19 
3 -4.4444E - 1 
4 1.6666E - 1 

It is evident that (within machine precision: 63 binary digits) the point (2.5, 9.5) is 
an unattainable point of the problem. 

(c) We interpolate f(t) = t4 at ti:= 5i/6, i = 0(1)5 (cf. H. Werner [14, p. 332]); 
for m = 4, k = 1 the denominator q was computed as 

q(t) = t - 1.60128E+18. 

The normalized coefficients ai, i = 0(1)5, as computed, are shown in Table 3. 
TABLE 3 

Coefficients ai for Example (c) 

i ai 

0 -3.1250E - 2 
1 1.5625E - 1 
2 -3.1250E - 1 
3 3.1250E - 1 
4 -1.5625E - 1 
5 3.1250E - 2 

Within machine precision one gets exactly the same normalized coefficients for 
the correct denominator q(t) = 1; i.e., the fact that a pivot element which should be 
zero in exact arithmetic was not detected had no influence on the final result. This 
effect is reflected by the fact that the computed denominator has a coefficient of size 
1/eps, where eps denotes the machine precision. 

We emphasize, however, that sometimes rounding errors may cause troubles: If in 
the course of Gauss' algorithm a row is encountered all of whose entries were zero in 
exact arithmetic but are nonzero due to roundoff and if this fact is overlooked, then 
the algorithm produces an "innocent looking" denominator which has no minimum 
degree; it then cannot be ruled out that the computed denominator has a root which 
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is not a pole of the interpolant. Thus, if small pivot elements occur, conclusions 
concerning the existence and location of poles of the interpolant must be drawn with 
caution; the interpolation property of the computed rational function is not affected 
by these effects as long as the computed coefficients remain nonzero. 

4. Differentiation of Rational Functions. A distinct advantage of the barycentric 
represention of rational function, which appears to have been overlooked so far 
(even if (1) represents a polynomial), is the fact that this form of the rational 
function admits a very simple formula for its derivatives. Usually, formulas for the 
derivatives of a rational function are based on partial fraction decomposition, which 
requires knowledge of the zeros of the denominator (cf. Henrici [3, p. 569 ff.]). 

PROPOSITION 11. Let r be a rational function given in its barycentric form (1), with 
a, # 0, i = 0(l)n. Assume that t is not a pole of r; then 

r(k)( r)/ka r it E 
(12) ~~~i=O i =)Ot/ 

if ( 0 ti, i = 0(1)n, k >? 0. 

(13) r(k)(t )/k! = air[(t1) kt,])/a O, s j nk>1. 
,=o; i+/j 

(Here, and in the sequel, we use the notation r[(q)k, t] instead of r[t,..., , t] for 
a k-fold argument.) 

Proof. (12) is evident for k = 0; now assume that (12) is true for some k > 0. 
Then (12) implies 

n 

E air[( )k, ti] = 0; 

i=O 

differentiation with respect to 4 yields 

(k + 1) E ar ()k+2, t1] = 
i =o 

If ( # t,, j = O(l)n, then from 

0 = f a,r()k+2, ti] = ai {r[()k+1, ti]- r[()k+2] /(ti- 
i=o i=o 

it follows that 

r [()k+2] = r(k+1)(4)/(k + 1)! 

- , ,, ai r[( )k+tI/ , t 
' 

i.e., (12) is true for k + 1; the proof of (13) is similar. O 
Remark. There is a remarkable analogy between (12) and Cauchy's integral 

formula 

(14) n(rF )f(k)( )/k! = f(Z)/(Z - t)k+ldz/2vi 
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where f is an analytic function defined in a simply connected domain R C C, r a 
piecewise regular closed curve not passing through ~, n(r, ') the winding number of 
D with respect to r c R (cf., e.g., Henrici [3, p. 245 ff.]). Using the identities 

r 1/(z - t) dz = 277in((r,), 

f[a) 
- 

z)/( 
Z dz if (z)/(z 

- 1) dz, 

(14) may be written in the form 

(14') f(k)( )/k! [ D ] dz/ z dz if n()r,)0. 

Thus (12) may be interpreted as a discrete analogue of the Cauchy integral formula 
(14) for rational functions; note that (12) remains valid if the nodes ti, i = 0(1)n, are 
complex. [1 

Proposition 11 gives rise to a simple scheme for the recursive computation of the 
derivatives of a rational function: 

PROPOSITION 12. Let r be a rational function given in its barycentric form (1), with 
a1i # 0, i = 0(1)n; assume that 4 is not a pole of r. 

(a) If ( # ti, i = 0(1)n, let 

/E - i = 0(1)n, 

8io:=f1, i=0(1)n, 
n 

(15) i9k : tYiaik k = k 0 1, 2, 3, 

Si,k+'l: (8i,k - Tk)/ti 0) 

Then c~k = r(k)(()/k!, Sik = r[( )k, t], i- 0(1)n, k = 0, 1, 2, 39 .... 
(b) Let 4 = tj; if 

Yi:= -ai/aj, i = 0(1)j - 1, j + 1(1)n, 

i, := (fi - f1)/(ti - t1), i = 0(1)j - 1, j + 1(1)n, 

'Pk : Yi kik 
i=o; i:(j k = 1,2, 3..., 

ik+1 := (8ik - k)/(ti t-), i = 0(1)j - 1, 1 + 1(1)n 

then qck = r(k)(tj)/k!, 8ik = r[(tj)k, ti], i = 0(1)j - 1, j + 1(1)n, k = 1, 2, 39 .... 

The proof follows from Proposition 11 by induction. [1 
Proposition 11 may also be used to derive formulas for numerical differentiation 

based on rational interpolation; for this purpose it is, however, more convenient to 
use another representation of r'(tj), j = 0(1)n: 

PRoPosITIoN 13. Let P E Hn be the unique polynomial interpolating f E C'[a, b] 
at tO ..., tn e [a, b]; assume that q is a nontrivial solution of (5) such that q(t1) # 0, 
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= 0(1)n, r = p/q, p EC Hm. Furthermore, let Qj(t):= q[t, tj]. Then 

(16) r( (tJ P( (tj) - ( tj ti) j~ = 0(1) n. 
i ,i*1 q(tj) 

Proof. From the equation 
n 

f (t) - r(t) =- ( (t - ti)(fq) Itog .. *9. tng t]/q(t)g 
i=O 

one deduces 

f'(tj) - r'(tj) = (ti - ti) (%) -y 
i=O; 1:*.jqt 

and 
n 

MO (j- P'(t1) 7 (t- t- [tog * * to tj] 9 

i =O; i:*/ 

so that 

r'( tJ)- P'(t1) H= 1 
(ti t)i f [to *... * tng tj] - [ ? _ no j] ) 

i=; i*j }~j 
= Ii n (t1- t1) (f(q(tj) q-))Sto) . * * ng ti] 
i=O; 1:*] ( 

(16) now follows from Lemma 1. El 

COROLLARY 14. If k = 1, m = n - 1 in Proposition 13, then 

(17) i 0 j~~~~~~~~~~j ~f [tow .. 9 o l y l tn]2 

j =0(1)n. 
Proof. From (5) one readily concludes that 

q(t) = f [tow .. * * tn](t - tj) -f [tow .. * * ti_19 tj+19 .. * * tn]; 

the assertion therefore follows from Lemma 1 and (16). E 
Remarks. (a) Note that the value P'(tj) in (16), (17) represents the result of a usual 

differentiation formula based on polynomial interpolation of the data 
(to, go) ... 9 (t, fAn); the second term on the right side of (16) (resp. (17)) thus is a 
correction which is due to the fact that rational interpolation is used instead of 
polynomial interpolation. 

(b) Differentiation formulas based on rational interpolation may be useful if 
"nonpolynomial information" concerning the function f, which is to be differenti- 
ated, is known; e.g., if it is known that near the point where f is to be differentiated 
there is a pole, then one cannot exploit this additional information in usual 
differentiation formulas based on polynomial interpolation. 

Examples. (a) Let f(t) = tan(t) be given at to = 1.3, t1 = 1.4, t2 = 1.5; if the 
derivative of f at the nodes is to be approximated from these data then (with the 
notations of Corollary 14) formula (17) yields the results in Table 4. 
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TABLE 4 

Numerical differentiation of the tangent function 

tJ f ''tj) P'(t;) rf(tj) 

1.3 13.975 -8.581 13.882 
1.4 34.615 52.497 34.731 
1.5 199.850 113.574 198.520 

Unlike the differentiation formula based on polynomial interpolation (cf. the third 
column), our differentiation formula (17) gives quite satisfactory results. 

(b) Let f(t) = arctan(t) be given at to = 1, t1 = 2, t2 = 3; with these data the 
differentiation formula (17) yields the results in Table 5. 

TABLE 5 

Numerical differentiation of the arctangent function 

tj f '(0y P'(tj) r'(tj) 

1 0.5 0.412 0.526 
2 0.2 0.232 0.197 
3 0.1 0.052 0.102 

Both f and its (1, l)-interpolant r share the common property that they are 
asymptotically constant. As the stepsize (which is 1 in the present example) is large, 
differentiation formulas based on polynomial interpolation give poor results. 
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